

Como avaliamos a Saúde dos animais com o monitoramento?













# ÍNDICE

| COMO AVALIAMOS A SAÚDE DOS ANIMAIS COM O MONITORAMENTO?     | 3  |
|-------------------------------------------------------------|----|
| RUMINAÇÃO                                                   | 4  |
| O QUE A RUMINAÇÃO PODE NOS DIZER SOBRE O ANIMAL?            | 5  |
| DOENÇAS NO PERÍODO DE TRANSIÇÃO                             | 6  |
| MASTITE                                                     | 7  |
| BEZERRAS DURANTE A FASE DE ALEITAMENTO                      | 9  |
| NUTRIÇÃO                                                    |    |
| ESTRESSE TÉRMICO                                            | 11 |
| MONITORAMENTO                                               | 13 |
| COMO UTILIZAR O MONITORAMENTO DA ALLFLEX DENTRO DA FAZENDA? | 13 |
| PRONTO!                                                     | 17 |







#### COMO AVALIAMOS A SAÚDE DOS ANIMAIS COM O MONITORAMENTO?

O monitoramento automatizado capta constantemente informações de um indivíduo e se utiliza dos desvios do comportamento padrão do próprio animal para nos informar o que pode estar acontecendo. As principais causas para mudanças no comportamento de bovinos são o cio e as doenças (Grinter et al., 2019). E isso não é muita novidade para a maioria das pessoas que estão envolvidas na atividade leiteira e que lidam diariamente com os animais. Porém, as mudanças comportamentais podem ser sutis e muitas vezes, no caso das doenças, podemos não perceber até que sinais clínicos apareçam ou que o quadro do animal se agrave. Por isso, muitos pesquisadores e empresas se dedicam a identificar quais parâmetros do comportamento dos animais poderiam nos informar mais sobre o que está acontecendo com o organismo do animal como um todo.

Um dos primeiros parâmetros utilizados para coleta de dados dos animais foi a atividade. A mudança na atividade se refere à movimentação do animal ao longo do tempo e é considerado um indicador claro da fisiologia e da condição física do animal. Esse parâmetro é o principal utilizado para identificação dos animais em cio, porém também é extremamente eficaz para identificar doenças. Vacas são animais gregários e que gostam muito de rotina. Das 24 horas do dia, os animais adultos passam cerca de 3 a 5 horas comendo, 10 a 14 horas descansando (dentro desse período de descanso está inserido o tempo de ruminação), 2 a 3 horas andando e interagindo com outros animais, e cerca de 30 minutos bebendo água. O tempo restante, por volta de 2,5 a 3,5 horas, é normalmente dedicado aos turnos de ordenha, contanto com o tempo de espera e de retorno para o local de permanência. O monitoramento automatizado nos auxilia a permitir que as vacas que não precisam de atenção continuem em sua rotina normal e que não passem por manejos desnecessários.

O tempo comendo é um dos parâmetros utilizados para se avaliar o comportamento de ingestão dos animais. Esse comportamento envolve os processos ativos de ingestão de alimentos











sólidos, que são o tempo de consumo, a quantidade de alimento ingerida e a taxa de ingestão. A mensuração da quantidade de alimento ingerido por cada animal, dentro dos sistemas de produção, ainda não é uma tarefa fácil para as tecnologias disponíveis, principalmente em se tratando de pasto como fonte de volumoso. Mas, o tempo que cada animal passa ingerindo alimentos, normalmente segue um padrão ao longo do tempo e com isso pode ser muito bem monitorado. Uma vaca comendo uma boa dieta em mistura total, pode passar de 3 a 5 horas se alimentando, de forma intervalada.

O comportamento de ingestão é bastante sensível a fatores externos ao animal, como condição de manejo e a estrutura da dieta fornecida. Mas também sofre grandes alterações de acordo com a condição de saúde da vaca, principalmente durante o período de transição. Alguns autores demonstraram que vacas que apresentaram antes do parto menor consumo de matéria seca e menor tempo consumindo alimentos, foram diagnosticadas após o parto com metrite e cetose subclínica (Huzzey et al., 2007; Goldhawk et al., 2009).

A ruminação é atualmente o parâmetro mais utilizado do comportamento dos animais para predizer não só a ocorrência de doenças, como também para reforçar a identificação de animais em cio, para nos dar informações sobre a nutrição, o conforto e o bem-estar dos animais. Por isso, deste parágrafo em diante, vamos focar em trazer informações sobre o comportamento de ruminação dos animais.

# **RUMINAÇÃO**

O rúmen pode exercer quatro tipos de movimento. Quando se trata de uma bezerra, o primeiro movimento ruminal é caracterizado pelo fechamento da goteira esofágica, que permite a passagem do alimento líquido do esôfago direto ao abomaso. O segundo, compreende a movimentação do bolo alimentar dentro do rúmen e o terceiro é a ruminação. O quarto movimento ruminal é a eructação dos gases produzidos durante a fermentação dos alimentos.

O processo de ruminação, exercido pelos então chamados ruminantes (animais que possuem o rúmen, o retículo, omaso e abomaso em seu aparato gástrico), consiste em regurgitar, produzir saliva, remastigar e redeglutir a ingesta. Esse processo é de extrema importância para os animais para possibilitar um melhor aproveitamento do alimento fibroso, a partir da redução do tamanho das partículas, e para manter a saúde do ambiente ruminal com o estímulo à produção de saliva. O comportamento de ruminação se refere então à mensuração do tempo gasto pelo animal com essa atividade.

Os bovinos começam a ruminar ainda nas primeiras semanas de vida. O desenvolvimento do rúmen depende de uma série de fatores, mas o principal deles é a ingestão de alimentos sólidos. O rúmen é composto por capa muscular externa ao órgão e por um tecido papilar extenso em seu interior. Esse tecido papilar precisa de estímulos físicos e químicos para se desenvolver e esses estímulos são garantidos principalmente por alimentos sólidos de textura grosseira. A textura é importante para estimular fisicamente o tecido, provocando sua movimentação









e consequentemente o desenvolvimento da musculatura ao redor do rúmen. Os estímulos químicos são obtidos a partir dos ácidos graxos voláteis produzidos na fermentação dos alimentos, principalmente dos carboidratos contidos nesses. Esses ácidos graxos, com destaque para o butirato e para o propionato, são fonte energética para o epitélio do rúmen e ajudam a promover o desenvolvimento em número e em tamanho das papilas.

Esse desenvolvimento papilar é de extrema importância para a manutenção da saúde do ambiente ruminal, uma vez que essas estruturas são responsáveis pela absorção de grande parte dos ácidos graxos, que tem pH baixo. Muitas fazendas utilizam a estratégia de acrescentar algum alimento volumoso, como feno, no concentrado de baixa granulometria das bezerras. Isso auxilia no desenvolvimento do rúmen por promover maior movimentação do órgão e consequentemente da musculatura. Muitos trabalhos nos mostram que quanto mais cedo iniciarmos o fornecimento de alimentos concentrados para as bezerras, melhor será o desenvolvimento do rúmen, maior o ganho de peso durante a fase de aleitamento e melhor será a transição durante o período de desmame.

As bezerras bem colostradas e criadas com um bom manejo nutricional começam a ruminar com aproximadamente 1 a 2 semanas de vida. O tempo ruminando aumenta linearmente com o aumento do consumo de alimentos até chegar entre a quarte e sexta semana de vida, estabilizando em cerca de 5 horas ou 300 minutos por dia. Após o desmame, quando os animais passam a basear sua alimentação em alimentos volumosos como a silagem e o capim, o tempo de ruminação aumenta

bastante e com poucas semanas os animais ultrapassam 400 minutos de ruminação diários. Quando chegam à vida adulta, o tempo médio de ruminação das vacas saudáveis é de cerca de 7.5 a 9 horas, ou de 450 a 600 minutos, por dia, variando principalmente de acordo com a dieta.

## O QUE A RUMINAÇÃO PODE NOS DIZER SOBRE O ANIMAL?

O principal estímulo para aumento da ruminação é o consumo de alimentos. Além desse, a baixa temperatura do ambiente, alguns receptores que se encontram na boca do animal, a qualidade e a quantidade de alimento fibroso, e a ordenha, são importantes fatores estimulantes. Entretanto, também existem fatores inibitórios da ruminação, como a febre, as endotoxemias, o cansaço, excesso de ácidos no ambiente ruminal, dor e a distensão do abomaso.

O hábito de ruminar foi também correlacionado, por diferentes autores, à ansiedade, ao estresse, a doenças e a desordens metabólicas, à composição da dieta, à qualidade da forragem e a erros de manejo (DeVries et al., 2009; Calamari et al., 2014; Schirmann et al., 2016). O uso da ruminação para detecção de doenças se faz ainda mais relevante durante o período de transição, que é marcado por desafios metabólicos e nutricionais. Monitorar o tempo de ruminação durante o pré-parto pode detectar vacas que vão apresentar problemas de saúde após o parto, segundo vários pesquisadores (Kaufman et al., 2016; Liboreiro et al., 2015). Estes problemas incluem, por exemplo, cetose, metrite, mastite, problemas locomotores e deslocamento de abomaso (Miguel-Pacheco et







al., 2014; Stagaferro et al., 2016; Schirmann et al., 2016). A associação das informações de ruminação e tempo comendo gera uma capacidade ainda maior de detecção dos problemas.

O tempo de ruminação ao redor do parto também tem correlação com as condições metabólicas das vacas, principalmente com marcadores sanguíneos da inflamação como a haptoglobina, que é uma proteína de fase aguda. A inflamação está associada com um lento aumento do tempo de ruminação no pós-parto.

#### Imagem: gráfico de saúde no sistema SenseHub



# DOENÇAS NO PERÍODO DE TRANSIÇÃO

O período de transição, didaticamente definido como os últimos 21 dias antes do parto e os primeiros 21 dias após o parto, é o período mais crítico para os animais leiteiros. Nesse intervalo acontecem várias transformações fisiológicas e de manejo que preparam o animal para começar a próxima lactação. Uma dessas mudanças, que inevitavelmente ocorre em todos os animais e pode ser mais intenso para as primíparas, é a queda do consumo.

A queda do consumo pode ser explicada pelo somatório de vários fatores. Alguns deles são as mudanças endócrinas, como aumento da concentração sanguínea de cortisol e de estrógeno com a proximidade do parto; e o rápido crescimento fetal nos últimos dias intrauterinos. Essa redução na ingestão de matéria seca culmina no quadro de balanço energético negativo, que nada mais é a situação em que o animal está

comendo menos do que seu corpo precisa para se manter e produzir.

O balanço energético normalmente fica negativo após o parto, quando ocorre o início da produção de leite e com isso a demanda súbita crescente por nutrientes para aumentar a produção desde o primeiro dia de lactação. Porém, se a queda do consumo for intensa dias antes do parto, o quadro de balanço energético negativo pode se instalar ainda antes do par-











to. Alguns fatores de manejo que podem ocorrer no pré-parto podem contribuir para essa antecipação, como o escore de condição corporal elevado, o estresse térmico, o espaçamento de cocho inadequado e a dieta mal formulada para o período seco.

Vacas em balanço energético negativo mobilizam as reservas no tecido adiposo para tentar suprir a demanda por energia. Esse processo leva ao aumento dos ácidos graxos não esterificados (NEFA) na circulação sanguínea, sendo parte oxidada para produção de energia e parte transformada em corpos cetônicos, como o Beta-Hidroxiburitato (BHB). Mas apesar de fornecer uma parte da energia necessária à produção do animal, quando esse processo ocorre de forma exagerada, pode comprometer alguns mecanismos de defesa do sistema imune e o animal acaba passando por período de imunossupressão.

Em consequência de todos esses fatores fisiológicos, comentados acima, e associados à qualidade do manejo pré-parto e das condições da maternidade, várias doenças podem ser desencadeadas. As consequências dessas doenças irão comprometer de imediato a produção dos animais, a fertilidade e o desempenho reprodutivo, vão aumentar o uso de antibióticos e a taxa de descarte involuntário.



Na maioria dos rebanhos, dentro do período de transição ocorrem 80% das doenças mais comuns para as vacas leiteiras, e, em decorrência disso, até os primeiros 60 dias de lactação ocorre a maior taxa de descarte involuntário dos animais. Podemos considerar as doenças a seguir como as mais comuns ou de maior incidência nas vacas leiteiras:

| Acidose | Retenção de Placenta    | Hesteatose Hepática | Cetose              |
|---------|-------------------------|---------------------|---------------------|
| Metrite | Deslocamento de Abomaso | Endotoxemia         | Hipocalcemia        |
| Mastite | Doenças Respiratórias   | Indigestões         | Doenças Infecciosas |

#### **MASTITE**

A mastite por exemplo, é uma das doenças mais prevalentes dentro dos rebanhos leiteiros, que afeta muito a produção dos animais e causa grandes perdas econômicas para a fazenda. A detecção de mastite clí-









nica nas fazendas é normalmente feita pela identificação de alterações no leite, sinais de inflamação no úbere e ou sinais sistêmicos. Também é possível identificar quadros de mastite através das informações fornecidas por sistemas automatizados de coleta de dados. Dados como a produção de leite, a composição e condutividade elétrica desse leite, e a contagem de células somáticas, podem ser obtidos direto na ordenha.

Os sistemas de monitoramento automatizado não nos informam a doença apresentada pelo animal, mas nos dizem com antecedência que um problema irá acontecer. No caso das mastites, a informação sobre a ruminação dos animais tem boa sensibilidade para identificação dos quadros. Animais que irão apresentar mastite podem apresentar uma queda no tempo de ruminação acentuada, chegando a ruminar menos de 400 minutos nos dias que antecedem o quadro clínico instalado (Stangaferro et al., 2016). Nos quadros de mastite por agentes como a Escherichia coli por exemplo, que são caracterizados por uma resposta inflamatória severa e possível septicemia, a queda na ruminação pode ser ainda mais acentuada.

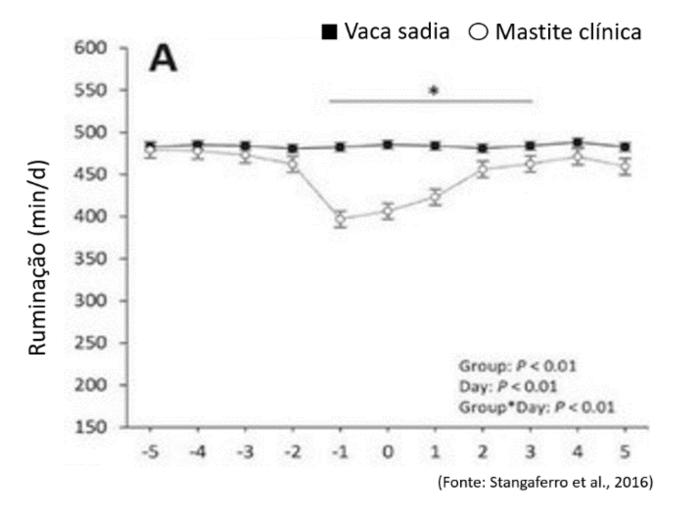











Imagem: Período de transição de uma vaca no sistema SenseHub

#### **BEZERRAS DURANTE A FASE DE ALEITAMENTO**

Durante os primeiros dias de vida, o sistema imunológico das bezerras depende bastante dos mecanismos de defesa adquiridos pelo consumo do colostro. Essa imunidade passiva advinda da vaca, é fonte de imunoglobulinas e de células que atuam na defesa do organismo contra os patógenos. Porém o fornecimento do colostro, de boa qualidade

(acima de 22° Brix) e na quantidade adequada (mínimo 10% do peso vivo), aos animais deve ser feito o mais rápido possível após o nascimento, para que o intestino da bezerra consiga absorver esses fatores de defesa e para que possa aproveitar os nutrientes desse rico alimento.

Ao nascimento, a bezerra já possui em seu organismo células de defesa importantes, como os macrófagos e neutrófilos, bem como linfócitos. Porém, essas células podem estar pouco ativas ou em baixo número, devido ao pouco desafio imune quando o animal ainda estava no útero da mãe. O desenvolvimento do sistema imunológico da própria bezerra é um processo gradativo e que atinge níveis estáveis perto dos seis meses de vida. As imunoglobulinas absorvidas no colostro da vaca por sua vez, começam a desaparecer do organismo das bezerras aos 21 dias de vida. Esse período em que o animal permanece sem a proteção dos fatores da imunidade passiva e que ainda não tem seu próprio sistema imune muito ativo, é chamado de janela de susceptibilidade. Nessa janela, que normalmente ocorre ainda dentro do período de aleitamento, as bezerras ficam mais susceptíveis aos patógenos.

As diarreias e as doenças respiratórias são as principais doenças enfrentadas pelas bezerras. A maioria dos quadros de diarreia ocorrem nas primeiras duas semanas de vida do animal. Já os quadros respiratórios podem se apresentar distribuídos ao longo de todo o período de aleitamento, reduzindo algumas semanas após o desmame, e estão muito relacionados ao manejo de descorna, à desmama e nos primeiros dias de vida à própria diarreia. A maioria dos casos de morte das bezerras também ocorre durante o período de aleitamento, com picos de morte







talidade entre a primeira e a terceira semana de vida.

Existe um padrão ouro americano para criação de bezerras que estabelece que a mortalidade dentro do período de aleitamento não pode exceder a 3%, porém não é incomum fazendas que tem mortalidades muito superiores a isso. As doenças são a principal causa da mortalidade desses animais, o que torna a colostragem e a identificação das doenças o mais rápido possível, extremamente importante para se conseguir reduzir as perdas de bezerras. Assim como para animais adultos, monitorar o tempo consumindo alimentos e a atividade pode nos ajudar a identificar problemas de saúde com as bezerras. Durante o aleitamento, mensurar o tempo gasto para o consumo do leite também é uma importante informação.

Um fator importante para o desempenho dos animais jovens e para a redução da mortalidade é o consumo de concentrado e o desenvolvimento do rúmen. Apesar de não ser considerado um ruminante ao nascimento, as bezerras podem começar a ruminar ainda nas primeiras semanas de vida e esse tempo de ruminação aumenta com o aumento do consumo de alimentos sólidos. Esse desenvolvimento ruminal e o consumo de ração é especialmente importante para que ao desaleitamento as bezerras possam deixar de depender do leite como a principal fonte de nutrientes sem dificuldade, tornando a transição menos estressante. Algumas fazendas inclusive utilizam o consumo de concentrado como um dos parâmetros de decisão para desmamar os animais.

### Imagem: Gráfico de saúde para bezerras no sistema SenseHub



## **NUTRIÇÃO**

A ingestão de fibra fisicamente efetiva, a proporção de FDN da dieta e partículas de tamanho longo estimulam a ruminação. O tempo de ruminação pode aumentar quase linearmente com o aumento da proporção de silagem fornecida nas dietas. A proporção de animais no lote ruminando em um dado momento após a ingestão de alimentos também é uma informação utilizada por alguns profissionais para inferir sobre a saúde do rúmen das vacas. Alguns nutricionistas consideram que um rebanho, alimentado com dieta total, tem um ambiente rumi-









nal funcionando de forma saudável quando, em qualquer momento do dia, em média 40% das vacas estão ruminando (Maekawa et al., 2002).

O tamanho das partículas da dieta, principalmente da forragem, tem correlação direta com o tempo de ruminação e com a produção de leite pelos animais. Partículas com tamanho e em quantidade adequada, proporcionam ao animal a chamada fibra fisicamente efetiva. Essa fibra é responsável por estimular o processo de ruminação, a produção de saliva e a ajudar na estratificação do conteúdo do rúmen em camadas. A fibra efetiva tem relação direta, portanto, com a saúde do rúmen e com a manutenção dos níveis de gordura no leite.

Dietas com bom teor de fibra efetiva, vão manter o tempo de ruminação adequado e ajudar a prevenir quadros agudos de acidose. Porém, quando fibra de má qualidade é fornecida aos animais, pode ocorrer uma redução do consumo de alimentos, redução da ruminação e consequentemente uma redução da taxa de passagem do alimento no rúmen e uma menor eficiência do uso dos nutrientes. Sabendo disso, o tempo de ruminação dos grupos ou lotes pode nos informar muito sobre a qualidade da dieta fornecida aos animais, se ocorreu uma mudança nessa dieta ou uma mudança da fonte de alimento volumoso.

### Imagem: Gráfico da consistência de ruminação no sistema SenseHub



#### **ESTRESSE TÉRMICO**

Estima-se que as perdas econômicas dos produtores, decorrentes do estresse térmico enfrentado pelos animais de produção, passam dos U\$350 bilhões de dólares por ano e mesmo assim, esse foi um tema bastante negligenciado por muito tempo. Durante o estresse térmico, as vacas apresentam menor consumo de alimentos, menor tempo de ruminação, aumento da frequência respiratória e da temperatura corporal.







O desconforto térmico, seja pelo frio ou pelo calor, traz consequências metabólicas extremas para o animal, que podem perdurar por vários dias mesmo após a condição estressante ter cessado. Vacas que passam por estresse térmico durante o período seco apresentam menor crescimento no número de células da glândula mamária e maior taxa de morte dessas mesmas células. A principal consequência disso é a menor produção de leite durante toda a lactação subsequente. A atividade das células de defesa da vaca fica reduzida, deixando o animal mais susceptível a patógenos. Alguns pesquisadores já demonstraram que resfriar as vacas durante o pré-parto promove uma melhora no status imunológico dos animais durante todo o período de transição.

O final da gestação é um período crítico para a vaca, mas também para o feto. O estresse térmico durante o pré-parto compromete o desenvolvimento da placenta e como 60% do peso do bezerro neonato é acumulado nos últimos dois meses de gestação, o desconforto térmico imposto à mãe, pode determinar a ocorrência de hipóxia fetal, má distribuição de nutrientes para o feto e consequentemente um retardamento do crescimento dele. Esses impactos negativos sobre o feto, podem gerar efeitos persistentes na bezerra recém-nascida, como má absorção dos componentes do colostro, menor atividade do sistema imune e consequentemente maior ocorrência de doenças e menor ganho de peso.

Durante a lactação, o principal e mais marcante efeito do estresse térmico observado é a queda da produção de leite da vaca. Essa queda da produção é explicada em grande parte pela queda de consumo provocada pelo desconforto térmico, mas não totalmente. O quadro de estresse térmico também provoca uma inflamação do intestino que

acaba por ativar o sistema imune do animal. Essa ativação demanda uma grande quantidade de nutrientes, os mesmos que deveriam ser utilizados pelo animal para produzir leite. Além disso, o organismo passa a gastar mais energia para reduzir a temperatura corporal e voltar a situação de conforto. Outros efeitos negativos do estresse térmico são um pior desempenho reprodutivo, com aumento das taxas de perda de prenhez, menor expressão de comportamento de cio e, a longo prazo, aumento do intervalo entre partos do rebanho.

Os principais métodos para se detectar o desconforto térmico em um animal são a temperatura retal e a frequência respiratória. Em uma situação normal, as vacas vão apresentar uma temperatura corporal em torno de 37.8 a 39.2°C, e a frequência respiratória variando de 10 a 30 movimentos por minuto. Na situação de estresse pelo calor, a temperatura retal dos animais pode ultrapassar os 39.4°C, sem estar ocorrendo um processo infeccioso, e a frequência respiratória pode passar dos 60 movimentos por minuto. Esses dois parâmetros têm uma grande correlação entre si, não sendo necessário, para identificar a condição de estresse térmico pelo calor, medir a temperatura do animal se a informação da frequência respiratória está disponível.









#### Imagem: Gráfico de estresse térmico no sistema SenseHub



#### **MONITORAMENTO**

Agora que você já tem todas essas informações, pode decidir se o monitoramento se enquadra na realidade da sua fazenda.

O monitoramento animal já se tornou uma realidade na produção leiteira. Além de permitir a otimização do tempo de trabalho dos colaboradores, tem bastante impacto na eficiência dos processos e consequentemente na redução dos custos de produção. Além de ser líder mundial na identificação de bovinos, a Allflex também é líder na área de monitoramento automatizado, com cerca de

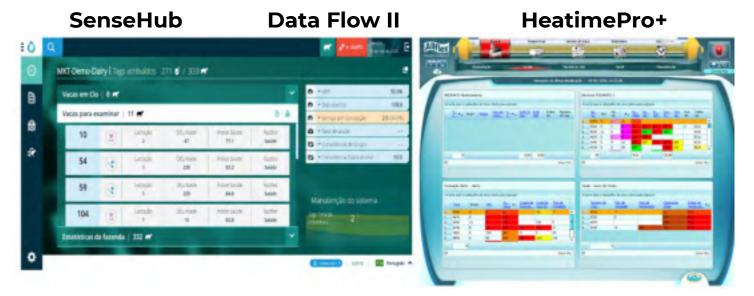
6 milhões de animais em suas plataformas, atualmente. A estrutura de desenvolvimento e aprimoramento do sistema está baseada em Israel e conta com o suporte de campo de profissionais ao redor do mundo.

A Allflex desenvolveu o primeiro colar capaz de identificar a atividade dos animais ainda na década de 1990. Em meados dos anos 2000 colocou à disposição do mercado o colar que capta o tempo de ruminação das vacas. Além de ser pioneira no desenvolvimento do monitoramento, a empresa também foi a primeira a desenvolver os medidores de leite de fluxo livre para as ordenhas mecânicas, o que possibilitou a criação de diversas tecnologias para medição do leite produzido individualmente pelos animais. Hoje temos dispositivos em formatos de brinco ou colar, que nos informam também sobre muito sobre os animais.

#### COMO UTILIZAR O MONITORAMENTO DA ALLFLEX DENTRO DA FAZENDA?

Para colocar o monitoramento em funcionamento o produtor precisa seguir quatro passos iniciais!

## 1º Passo: Escolha da plataforma!


O primeiro passo para ter o monitoramento funcionando é escolher qual plataforma atende melhor aos objetivos da fazenda. A Allflex disponibiliza diferentes soluções, desde softwares robustos que agregam o comportamento dos animais ao controle dos índices zootécnicos e do processo de ordenha, até plataformas que focam no levantamento de







informações sobre os animais em tempo real, para tomada de decisão. Hoje oferecemos ao produtor três possibilidades de plataforma para a atividade leiteira:



O SenseHub é uma plataforma focada no monitoramento do comportamento dos animais. Essa é uma ferramenta que auxilia a fazenda na tomada de decisões gerando alertas em tempo real, baseados nos relatórios que possui. Já o HeatimePro+ é um software de gestão que agrega à uma grande quantidade de relatórios zootécnicos, os dados do comportamento dos indivíduos do rebanho. O Data Flow por sua vez, compreende o HeatimePro+, junto com as informações da produção de leite dos animais e da eficiência dos processos de retirada do leite, quando a fazenda possui a inteligência de ordenha da Allflex.

# 2° Passo: Definição da categoria a ser monitorada e do plano de aplicação!

Feita a decisão pela plataforma é hora do segundo passo: definir quais categorias dentro da fazenda precisam ser monitoradas e quais informações queremos obter de cada uma!



O plano Young Stock é específico para animais de 0 a 6 meses de vida e vai nos fornecer informações sobre a saúde, desenvolvimento do rúmen e conforto do animal! Já os planos Starter, Advanced e Premium podem ser utilizados para todos os outros animais, de novilhas a partir







dos seis meses de vida até as vacas em lactação.

Se em algum momento o produtor que escolheu os planos Starter ou Advanced, quiser optar por visualizar mais informações sobre seus animais, é possível fazer um upgrade do sistema para o plano Premium, por exemplo. Dessa forma o produtor continua trabalhando com a plataforma que escolheu, porém vai poder ter conhecimento sobre um maior número de dados, sem precisar mudar nada na estrutura da fazenda!

## 3° Passo: Escolha do dispositivo de monitoramento

O terceiro passo consiste em escolher qual dispositivo a fazenda quer utilizar para captar os dados de seus animais! Disponibilizamos dois tipos de dispositivos:



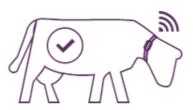
Ambos dispositivos captam as mesmas informações, com a mesma acurácia! A única diferença entre eles é o tempo de vida da bateria e o local em que são colocados nos animais. Um detalhe importante sobre estes dispositivos é que para animais jovens, principalmente para aqueles que ainda estão em aleitamento, indicamos apenas os brincos! Para novilhas e vacas, a fazenda pode escolher o dispositivo que quiser, podendo inclusive ter os dois tipos dentro do mesmo rebanho e em animais da mesma categoria.



Os dados coletados de cada indivíduo por meio do colar e do brinco da Allflex são os seguintes:

| Atividade Ruminação Frequência Respiratória Tempo comendo |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

Com esses quatro parâmetros e com a segurança proporcionada por um banco de dados com milhões de animais, nossas plataformas são capazes de gerar informações precisas sobre a reprodução, a saúde, a nutrição, o conforto térmico, a rotina e o bem-estar dos animais, dos lotes e do rebanho como um todo.


















### 4 Passo: Instalação!

O último e quarto passo para começar a utilizar o monitoramento é a instalação do equipamento e a colocação dos dispositivos nos animais! No momento da instalação, nossos técnicos estão presentes para fazer a colocação correta do equipamento no local, para instruir como colocar os dispositivos nos animais e para fazer o primeiro treinamento sobre o sistema!

## Observações importantes:

Durante a instalação precisamos ter disponível no local uma internet de boa qualidade! Isso é necessário para que possamos ativar a licença do sistema do produtor junto à nossa equipe de Israel! Depois que esse processo é concluído, o sistema funcionará normalmente sem a internet, porém aconselhamos a sempre tê-la disponível para que possamos garantir um suporte técnico remoto de qualidade e para que o aplicativo fora do computador funcione!



Antes do dia da instalação também é preciso que a fazenda já tenha providenciado o dispositivo que quer utilizar para ver as informações no sistema! No caso de plataformas como o Heatime Pro+ e o Data Flow II, precisamos de um computador com um bom processador, que deverá permanecer ligado o tempo todo, pois é o sistema instalado no mesmo que vai processar os dados coletados pelo colar ou pelo brinco! Para o SenseHub, como é a própria antena quem processa os dados dos animais, o produtor tem mais flexibilidade e pode escolher entre computador, tablet, laptop e celular.









Feita a instalação e a ativação do sistema para o produtor, são criados também um acesso ao aplicativo para celular da plataforma escolhida. Esse aplicativo pode ser acessado ao mesmo tempo por quantas pessoas forem importantes para a fazenda, sem interferir em nada na qualidade das informações! O acesso pelo aplicativo é muito importante para que mesmo estando fora da fazenda, as pessoas possam ter controle do que está acontecendo com os animais.

#### PRONTO!

Cumpridos os quatros passos, o sistema está pronto para trabalhar e vai começar imediatamente a captar informações sobre os animais e sobre o rebanho como um todo, a cada minuto, 24 horas por dia! Agora só é preciso aprender a encaixar o monitoramento na rotina da fazenda, o que é mais fácil do que se possa imaginar!

Esse aprendizado é facilitado por um de nossos técnicos, de acordo com a região em que a fazenda se encontra, que fica sempre disponível e é responsável por fazer os treinamentos, tirar dúvidas e pelo acompanhamento do funcionamento do sistema da fazenda!









